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A two-point, two-time similarity solution is derived for homogeneous decaying turbulence. This is
the first known solution which includes the temporal decay at two-different times. It assumes that the
turbulence is homogeneous in all three space dimensions, and finds that homogeneity holds across
time. The solutions show that time is logarithmically “stretched” while the homogeneous spatial scales
grow. This solution reduces to the two point, single time equation when the two times are set equal. The
turbulence initially decays exponentially, then asymptotically as t�n where n ≥ 1 and equality is possi-
ble only if the initial energy is infinite. The methodology should be applicable to other non-equilibrium
homogeneous turbulent flows. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974355]

I. INTRODUCTION

It has been customary since the analysis of De Karman
and Howarth1 to treat homogeneous decaying turbulence by
examining only the spatial correlation (or their spectral coun-
terparts) as a function of time. For the most part experiments
have used decaying turbulence in wind-tunnels together with
Taylor’s frozen field hypothesis to interpret the results.2–5

Numerical studies of both forced and decaying turbulence have
followed the same path, treating time as an independent vari-
able only coupled through time-dependent coefficients to the
spatial correlations and spectra.

There has never been completely satisfactory agreement
between the results of either simulations or experiments and
theory. The non-locality and time dependence of the turbulent
equations of motion lead to a difficulty in producing a model
of the flow. One aspect of this difficulty lies in the modeling
of different turbulence quantities, namely, the diffusion, pro-
duction, and dissipation terms of the TKE equation. Efforts
have included a turbulent time scale as the second variable
in two-equation turbulence modeling to successfully replicate
empirical results in the effort to simplify the calculation of
flow fields.6 Additionally, models that incorporated multiple
independently calculated time scales to better capture the tur-
bulence acting across a spectrum of scales showed promising
results.7

George8 showed that part of the problem with the ear-
lier similarity solutions was that they were over-constrained.
The revised equilibrium similarity approach of George fixed
some of the problems, but even so, discrepancies (e.g., the inte-
gral scale and the derivative skewness) remained problematic,
especially relative to the experiments. Some of the questions
could be rationalized by short-comings of the experiments in
modeling the assumed theoretical conditions, or vice-versa.

a)Electronic mail: Hultmark@Princeton.edu

The most obvious difference is the finite scale of an experi-
ment since a homogeneous theory is by definition infinite in
extent. Another challenge with fixed and bounded domains in
both experiments and simulations (at least to-date) is the fact
that the relevant turbulence scales changed with time. As a
consequence, the spatial resolution changed with time, since
the computational grid (or tunnel size) was fixed while the
scales grew. While there will be sufficient resolution of the
small scales of the flow, a decreased domain size relative to
the large scales can result in the boundaries affecting the tur-
bulence and leading to a departure from theories based on
an infinite domain. There have been multiple instances of a
dynamically scaled model that can instantaneously calculate
the sub-grid coefficients for large eddy simulations.9,10 These
methodologies are able to more accurately follow experimen-
tal and DNS calculations than previous single scale models,
and the use of homogeneous and isotropic theory to develop
the dynamic model shows the importance of understanding
these small scales.

Another potential problem (particularly with simulations
in Fourier space) was the triadic interactions that should have
occurred with neglected wavenumbers representing large and
smaller scales. Energy which should have left the chosen
wavenumber domain was “trapped” in the modes chosen, with
a result that energy piled up at both the highest and lowest
wavenumbers. So the DNS was at best a periodic turbulence,
and only a valid approximation to a homogeneous theory for
only a limited time, and even then for not all scales.

As noted by George,11 turbulence (at least of the homo-
geneous variety) is a four-dimensional phenomenon in which
all modes and time are coupled. This is easily demonstrated
for forced (or statistically stationary) turbulence by decom-
posing it in both time and space. The non-linear terms lead
to convolutions in both wavenumber and frequency. So the
triadic interactions are four-dimensional (three component
of wavenumber plus frequency), not three. And there is no
direct correspondence between the Fourier coefficients of this
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four-dimensional decomposition, say ûi(k,ω), and the results
of the usual three-dimensional decomposition, say ũi(k, t).
Thus frequency information is smeared across the wavenum-
ber domain in the latter representation, and the resulting
Fourier coefficients may not accurately represent the temporal
behavior since all phase information is lost. This problem does
not seem to have been previously noted, but it is potentially
significant. Even if the turbulence is decaying and temporal
Fourier modes are not an appropriate decomposition, any other
decomposition will yield similar results—four-dimensional
convolutions where no simple time dependence is possible.

The problem of how to decompose any flow was addressed
by Lumley,12 who looked for deterministic solutions by max-
imizing the projection of an unknown function onto the ran-
dom velocity field. He showed that almost any flow could be
decomposed optimally in terms of maximizing the energy in
each mode if the two-point, two-time four-dimensional space-
time correlations were known. For flows of finite total energy,
this result was the well-known POD, and the solutions were
empirical eigenfunctions given by a four-dimensional integral
equation with the two-point Reynolds stress tensor as kernel.
For infinite dimension, however, other constraints were needed
to make solutions to his projection integrable (e.g., homogene-
ity, stationarity, periodicity, similarity). Recent extensions of
these ideas show similarity considerations result in analyti-
cal solutions in non-homogeneous directions but for which
the flow is of infinite extent.13–16 The problem with all of the
efforts to apply this methodology to-date is the same as out-
lined above: any neglected dimension (especially if of infinite
extent) smears out the phase information into the coefficients
for the other directions. This complicates our understanding
and makes actual physical interpretation impossible. The goal
of this paper is to form an analysis of the two-spatial-point,
two-time averaged equations through the use of a similarity
solution.

II. THE BASIC EQUATIONS

All previous similarity analyses of decaying homoge-
neous turbulence begin with some form of the time-dependent
two-spatial-point equations, either the two-point correlation
functions, the structure functions, or their spectral counter-
parts.4,17,18 This analysis utilizes the two-spatial point, two-
time equations. We have not seen these previously derived,
but the derivation is straightforward as shown below.

As with the more classical two-spatial point equations,
we begin with the equation for the fluctuating velocity, say
ui at point x (which shall be represented with the Einsteinian
notation x = xi in the equations to follow) and time t, which
in the absence of a mean flow reduces to

∂ui

∂t
+

∂

∂xj
uiuj −

∂

∂xj
〈uiuj〉 = −

1
ρ

∂p
∂xi
+ ν

∂2ui

∂xj∂xj
. (1)

The angled brackets 〈·〉 denote an ensemble average. We have
used the incompressible continuity equation to rewrite the sec-
ond and third terms on the left-hand side, as well as simplifying
the viscous term on the right-hand side for constant density and
viscosity. We can write a similar equation at a different point,

say y (also represented with Einsteinian notation y = yi), and
denote the velocity at this point in space at a separate time, say
t̃, as ũk(y, t̃); i.e.,

∂ũk

∂ t̃
+

∂

∂yj
ũk ũj −

∂

∂yj
〈ũk ũj〉 = −

1
ρ

∂p̃
∂yk
+ ν

∂2ũk

∂yj∂yj
. (2)

Note that y represents a position to be evaluated at time t̃,
while x is to be evaluated at time t, as can be seen in Figure 1.
It is important to distinguish this because the separation vector
r = y(a) − x(a) = y(b) − x(b) is dependent on two times, not just
one or the other. Note that superscripts refer to the different
choice of origin, of which the correlation is hypothesized to
be independent.

We can create two-point two-time (spatial and temporal)
equations by multiplying the first equation by ũk , the second
by ui, adding, and averaging. The result is

∂

∂t
〈uiũk〉 +

∂

∂ t̃
〈uiũk〉 +

∂

∂xj
〈uiujũk〉 +

∂

∂yj
〈uiũjũk〉

=−
1
ρ

∂〈pũk〉

∂xi
−

1
ρ

∂〈uip̃〉
∂yk

+ ν
∂2〈uiũk〉

∂xj∂xj
+ ν

∂2〈uiũk〉

∂yj∂yj
. (3)

Note that we have used the fact that ui is not a function of y
or t̃, nor is ũk a function of x or t, to allow us to move the
respective variables into the derivatives.

It is proposed that homogeneity holds across time since
the entire flow field is homogeneous at each time, but this
will not be explicitly assumed in Section III. However, if
homogeneity does hold, then the derivatives can be trans-
formed into derivatives with respect to the separation vector
r(t, t̃) = y(t̃) − x(t),

∂

∂xj
= −

∂

∂rj
and

∂

∂yj
=

∂

∂rj
(4)

and substitution of these derivatives into Equation (3) results
in

∂

∂t
〈uiũk〉 +

∂

∂ t̃
〈uiũk〉 +

∂

∂rj

[
〈uiũjũk〉 − 〈uiujũk〉

]

=
1
ρ

[
∂

∂ri
〈pũk〉 −

∂

∂rk
〈uip̃〉

]
+ 2ν

∂2

∂r2
j

〈uiũk〉. (5)

FIG. 1. Velocity ui at time t and location x compared to velocity ũk at time
t̃ and location y. Points with a superscript of (b) correspond to the origin O2,
while points with a superscript of (a) correspond to the origin O1. The relation
between the two points is proposed to only depend on their separation r(t, t̃),
not the origin.
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When t = t̃, Equation (5) reduces to the two-point single-
time equation for homogeneous turbulence with no mean flow
as shown in Monin and Yaglom,17

∂

∂t
〈uiũk〉 +

∂

∂rj

[
〈uiũjũk〉 − 〈uiujũk〉

]

=
1
ρ

[
∂

∂ri
〈pũk〉 −

∂

∂rk
〈uip̃〉

]
+ 2ν

∂2

∂r2
j

〈uiũk〉, (6)

where r = r(t) only, since the second time is removed from the
relation. To better understand how this occurs, refer to Figures
1 and 2, which show the relation between the two points. The
two-space two-time equation had points x and y depending
on times t and t̃, which results in two time dependencies in
their correlation. However, when t = t̃, the previous position
y which corresponded to a different time can instead be seen
as point x′ at the same time. Therefore, all t̃ terms reduce to t.
The isotropic version of Equation (6) further reduces to the
Von Karman/Howarth equation.1

The reason the two time derivatives in Equation (3) col-
lapse to a single time derivative in Equation (6) without a
pre-factor of 2 stems from their functional independence from
the opposite coordinate. The first two terms in Equation (3)
were created by multiplying Equation (1) by ũk and Equation
(2) by ui, adding, then averaging to obtain

〈ũk
∂

∂t
ui〉 + 〈ui

∂

∂ t̃
ũk〉 + · · ·. (7)

The ũk term was then moved into the t derivative due to its
independence from that coordinate, and the same was done
with ui and t̃. Setting t̃ = t simplifies the expression

〈ũk
∂

∂t
ui〉 + 〈ui

∂

∂t
ũk〉 =

∂

∂t
〈uiũk〉. (8)

FIG. 2. When t̃ = t, the relation between ui and ũk reduces to the homogeneous
two-point, single time results.

This is simply the chain rule, because both velocities now
depend only on t.

III. THE TWO-POINT SPACE TIME
SIMILARITY HYPOTHESIS

Since the two-point two-time equation for the two-point
space-time correlation reduces to the two-point single time
equation, then any two-time similarity solution must reduce to
the two-point single time solution of George.8 What we expect
is a solution which recognizes that the turbulence intensity
decreases with time, and which also accommodates the change
in spatial scale as all the measures of it increase with time. We
will also take inspiration from Ewing et al.14 and expect that
the similarity function will include some non-dimensional time
coordinate that accommodates how time is “slowing” down as
the scales get larger and the turbulence less intense.

It is hypothesized that the equations governing the two-
point space, two-time velocity correlation tensor will admit to
similarity solutions of the following type:

〈ui(x, t)ũk(y, t̃)〉 = Rs(t, t̃) fi,k(η,Θ), (9)

where

η =
y − x

δ(t) + δ′( t̃)
=

r
δ + δ′

(10)

andΘ is some non-dimensional function of t and t̃, unknown a
priori. The form of Equation (9) follows previous two-space,
single time similarity solutions, with two new additions: the
second time t̃ is also included in the scaling parameter Rs,
and a non-dimensional time Θ is included in the similarity
function fi ,k . The inclusion of Θ is inspired by the work of
Ewing et al.,14 where a dependence on the difference of the
non-dimensional similarity coordinates was found. The length
scales δ and δ′ are to be dependent on their respective time only,
but the homogeneous coordinate η is hypothesized to be scaled
with the sum of them in order to retain scaling dependence on
the two times. This form is assumed to allow the similarity
coordinate to reduce to the two-space, single time similarity
coordinate when t̃ = t, under the informed assumption that the
length scales will be the same functional form as was found
by George.8

Rs(t, t̃), δ(t), and δ′( t̃) are scale functions which are to be
determined by insisting that all terms in the two-point space-
time equations have the same time dependence, or none at
all. This process is the same equilibrium similarity hypothesis
used by George,8 where there is no assumption applied. Either
the equations will admit to such solutions since all terms are
in equilibrium similarity or they will not. (Note that a com-
mon reason for failure is that terms have been included in the
analysis when they should have been neglected.)19

The pressure-velocity correlations and triple correlations
also are hypothesized to have similarity solutions of a like
form. Their inclusion into the following steps is omitted for
the sake of brevity, but the full derivation is shown in the
Appendix. Omission of these terms in the equations below
does not influence the resulting solution.

We transform Equation (3) to spatial and temporal sim-
ilarity coordinates, η and Θ, by substituting in the similarity
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form of Equation (9) and appropriately applying the chain-
rule. Note that this proposed solution is not being applied to
the homogeneous form in Equation (5), but instead to the
general form of Equation (3). If homogeneity does indeed
apply across time, then the proposed similarity solution will
satisfy Equation (3) and allow it to be written in the form
of Equation (5). Plugging Equation (9) into Equation (3)
gives

[
∂Rs

∂t

]
fi, k −

[ Rs

δ + δ′
dδ
dt

]
ηj
∂fi, k

∂ηj
+

[
Rs
∂Θ

∂t

] ∂fi, k

∂Θ

+

[
∂Rs

∂ t̃

]
fi, k −

[ Rs

δ + δ′
dδ′

d t̃

]
ηj
∂fi, k

∂ηj
+

[
Rs
∂Θ

∂ t̃

] ∂fi, k

∂Θ

+ · · · = · · · +

[ 2νRs

(δ + δ′)2

]
∂2

∂η2
j

fi, k , (11)

where the · · · indicate the pressure-velocity and triple correla-
tion terms. Note that in this equation, all terms with an explicit
dependence on t or t̃ only are contained in the brackets, while
the scaling functions contain non-dimensional dependencies
only. Equilibrium similarity of Equation (3) can only exist if
all the terms with square brackets in Equation (11) are pro-
portional as they evolve in time, or if the ratio of the different
terms depends at most on Θ, the non-dimensional similarity
variable in time.14,15

To determine if the proposed similarity solution satis-
fies the equilibrium similarity hypothesis, we divide through
by νRs, multiply by (δ + δ′)2, and rearrange the terms.
Additionally, if Rs is a separable function of the form

Rs(t, t̃) = Us(t)U
′
s(t̃), (12)

then Equation (11) can be expressed as Equation (13),

{ [
δ2

νUs

∂Us

∂t

]
+ 2

(
δ′

δ

) [
δ2

νUs

∂Us

∂t

]
+

(
δ′

δ

)2 [
δ2

νUs

∂Us

∂t

]
+

[
δ′2

νU ′s

∂U ′s
∂ t̃

]
+ 2

(
δ

δ′

) [
δ′2

νU ′s

∂U ′s
∂ t̃

]
+

(
δ

δ′

)2 [
δ′2

νU ′s

∂U ′s
∂ t̃

]}
fi,k

+

{ [
δ2

ν

∂Θ

∂t

]
+ 2

(
δ′

δ

) [
δ2

ν

∂Θ

∂t

]
+

(
δ′

δ

)2 [
δ2

ν

∂Θ

∂t

]
+

(
δ

δ′

)2 [
δ′2

ν

∂Θ

∂ t̃

]
+ 2

(
δ

δ′

) [
δ′2

ν

∂Θ

∂ t̃

]
+

[
δ′2

ν

∂Θ

∂ t̃

]} ∂fi,k
∂Θ

= · · · +

{ [
δ

ν

dδ
dt

]
+

(
δ′

δ

) [
δ

ν

dδ
dt

]
+

(
δ

δ′

) [
δ′

ν

dδ′

dt̃

]
+

[
δ′

ν

dδ′

dt̃

]}
ηj
∂ fi,k
∂ηj
+

[
2
] ∂2

∂η2
j

fi,k , (13)

[
δ2

νUs

∂Us

∂t

]
fi,k +

[
δ′2

νU ′s

∂U ′s
∂ t̃

]
fi,k +

[
δ2

ν

∂Θ

∂t

] ∂ fi,k
∂Θ
+

[
δ′2

ν

∂Θ

∂ t̃

] ∂ fi,k
∂Θ
−

[
δ

ν

dδ
dt

]
ηj
∂ fi,k
∂ηj
−

[
δ′

ν

dδ′

dt̃

]
ηj
∂ fi,k
∂ηj
−

[
2
] ∂2

∂η2
j

fi,k

+

(
δ′

δ

){
2

[
δ2

νUs

∂Us

∂t

]
fi,k + 2

[
δ2

ν

∂Θ

∂t

] ∂ fi,k
∂Θ
−

[
δ

ν

dδ
dt

]
ηj
∂ fi,k
∂ηj

}
+

(
δ′

δ

)2{ [
δ2

ν

∂Θ

∂t

] ∂ fi,k
∂Θ
+

[
δ2

νUs

∂Us

∂t

]
fi,k

}
+ · · ·

+

(
δ

δ′

){
2

[
δ′2

νU ′s

∂U ′s
∂ t̃

]
fi,k + 2

[
δ′2

ν

∂Θ

∂ t̃

] ∂ fi,k
∂Θ
−

[
δ′

ν

dδ′

dt̃

]
ηj
∂ fi,k
∂ηj

}
+

(
δ

δ′

)2{ [
δ′2

ν

∂Θ

∂ t̃

] ∂ fi,k
∂Θ
+

[
δ′2

νU ′s

∂U ′s
∂ t̃

]
fi,k

}
= 0.

(14)

The last term in Equation (13) has a bracketed value that is
temporally independent, implying that it and the square brack-
eted expressions in Equation (13) must have no dependence
on t or t̃. This can be shown by comparing the prefactors of
terms 1, 4, 7, 12, 13, 16, and 17 of Equation (13),

δ2

νUs

∂Us

∂t
∼
δ

ν

dδ
dt
∼
δ2

ν

∂Θ

∂t
∼

δ′2

νU ′s

∂U ′s
∂ t̃

∼
δ′

ν

dδ′

dt̃
∼
δ′2

ν

∂Θ

∂ t̃
∼ 2, (15)

where the∼ denotes the same time dependency. Each grouping
of scaling parameters in Equation (15) is a function of either
t or t̃ only. This requires that ∂Θ/∂ t̃ is not dependent on t
and that ∂Θ/∂t is not dependent on t̃, which will be shown to
be a valid assumption in Section IV. Since each grouping has
the same temporal dependency, the last term being a constant
requires that these expressions are all constants.

This argument of temporal independence can be better
visualized if Equation (13) is rearranged into Equation (14),

where the first line has all the time independent groupings. The
second and third lines of Equation (14) have the exact same
terms as the first line, but with pre-factors of length scale ratios.
These ratios must at most be functions of Θ, which is shown
below, otherwise they will violate the equilibrium similarity
hypothesis.

Another way to represent this argument is to use the
method shown by both Ewing et al.14 and Wänström,15 where
the ratio of any two separate scaling prefactors can be shown to
be at most a function of the similarity coordinateΘ. For exam-
ple, the ratio of the prefactors of terms 1 and 4 of Equation
(11) is

[
U ′s

∂Us

∂t

] / [
Us
∂U ′s
∂ t̃

]
. (16)

Utilizing the constraints of Equation (15) allows Equation (16)
to be re-written as (δ′/δ)2, to within a constant. Since each
length scale is proposed to be a function of one time only,
δ′2/δ2 cannot always be time independent for all t or t̃ and
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must then be a function of Θ,
[
U ′s

∂Us

∂t

] / [
Us
∂U ′s
∂ t̃

]
∼

(
δ′

δ

)2

= Γ(Θ). (17)

This ratio of length scales is exactly one of the groupings
that show up in Equation (14). The other ratios of length scales
that are in Equations (13) and (14), namely (δ/δ′)2, (δ/δ′), and
(δ′/δ), are just modified functions of Equation (17). As has
been argued, these length scale ratios must be shown to be a
function of Θ only in order for equilibrium similarity to hold,
which will be shown in Section IV.

From these considerations, we conclude that similarity
solutions are only possible if

[
δ

ν

dδ
dt

]
=

[
δ′

ν

dδ′

dt̃

]
= A(?), (18)

[
δ2

νUs

dUs

dt

]
=

[
δ′2

νU ′s

dU ′s
dt̃

]
= B(?), (19)

[
δ2

ν

∂Θ

∂t

]
= C1(?), (20)

[
δ′2

ν

∂Θ

∂ t̃

]
= C2(?), (21)

where A(?), B(?), C1(?), and C2(?) are constants that are at
most functions of initial conditions (indicated by ?), and the
equality across Equations (18) and (19) holds since the solu-
tions must be the same when t = t̃. The reason Equations (20)
and (21) have different constants is due to this condition not
existing for the single time solution, so they may not neces-
sarily have the same constant factor. Equation (18) can readily
be solved,

δ2 = δ2
o + 2A ν(t − to), (22)

δ′2 = δ2
o + 2A ν( t̃ − to), (23)

where we have chosen the initial condition and time origin to
be the same for both. These can be substituted into Equation
(19) to obtain

[
δ2

o + 2A ν(t − to)
νUs

dUs

dt

]
= B, (24)

which can in turn be rewritten as

d ln Us

d ln[δ2
o + 2A ν(t − to)]

=
B
2A

, (25)

or more simply
d ln Us

d ln(δ2)
=

B
2A

. (26)

An analogous expression holds for U ′s and δ′.
Integration from to to t yields the following solution for

Us:

ln

{
Us(t)
Us(to)

}
=

B
2A

ln

{
δ2(t)

δ2
o

}
(27)

=
B
2A

ln

{
1 +

2Aν

δ2
o

(t − to)

}
. (28)

This form of Equation (28) will be seen to have interesting
implications for both long and short time decay. Explicitly
solving for Us gives

Us(t)
Us,o

=

{
δ2(t)

δ2
o

}B/2A

=

{
1 +

2Aν

δ2
o

(t − to)

}B/2A

. (29)

Similarly, U ′s is given by

U ′s( t̃)
Us,o

=

{
δ′2( t̃)

δ2
o

}B/2A

=

{
1 +

2Aν

δ2
o

( t̃ − to)

}B/2A

. (30)

Then Rs(t, t̃) is given by the product

Rs(t, t̃) = Us,o
2
{
δ2(t) δ′2( t̃)

δ4
o

}B/2A

(31)

= Us,o
2
{ [

1 +
2Aν

δ2
o

(t − to)
] [

1 +
2Aν

δ2
o

( t̃ − to)
]}B/2A

.

(32)

So the final two-point, two-time correlation reduces to simply

〈uiũk〉 = Us,o
2
{
δ2 δ′2

δ4
o

}B/2A

fi,k(η,Θ) (33)

with the braced term equal to the braced term in Equation (32),
and B/2A dependent on the initial conditions.

IV. STATIONARITY IN THE STRETCHED
TIME COORDINATE

With the scaling for δ known, the unknown functionΘ(t, t̃)
can be found. Equations (20) and (21) imply

∂Θ

∂t

����t̃=const.
= C1(?)

ν

δ2
, (34)

∂Θ

∂ t̃

����t=const.
= C2(?)

ν

δ′2
. (35)

The terms C1 and C2 are constants which can at most depend
on the initial conditions. The results in Equations (22) and
(23) directly imply that the derivatives with respect to time are
related to the length scale (as shown in Equations (24)–(26)),
and thus Θ(t, t̃) can be written as follows:

Θ =
C1

2A
ln(δ2) + γ1( t̃) and Θ =

C2

2A
ln(δ′2) + γ2(t),

where γ1 and γ2 are functions of t̃ and t, respectively. These
results can immediately be combined

Θ =
C1

2A
ln(δ2) +

C2

2A
ln(δ′2) + γ3, (36)

where γ3 is a constant. Since any solution to the two-point two-
time equation must reduce to the two-point single-time equa-
tion when t = t̃, the constants C1 and C2 can be constrained.
The scaling function fi ,k is not dependent on time in the two-
point single-time similarity solution, so fi,k(η,Θ)→ fi,k(η) for
all t = t̃, implying that Θ is a constant or zero. This can be
done for all t = t̃ if C1 = �C2.

To find these constants, we look to the fully trans-
formed equation of motion. As was argued in Section III,
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equilibrium similarity requires that the ratio of any brack-
eted terms in Equation (11) be either constant or a function of
the similarity coordinate Θ(t, t̃), since all time dependence is
contained in these terms.14 This can easily be shown by Equa-
tion (16), which indicates the ratio of similarity functions is a
constant times δ′2/δ2, requiring

δ′2

δ2
= Γ(Θ) (37)

for some function Γ of the similarity coordinate. This can
equivalently be written as follows:

ln(δ′2) − ln(δ2) = ln
(
Γ(Θ)

)
= Φ(Θ) (38)

for some different function Φ of Θ. Therefore, we can set
C1 = �C2 = �1 and γ3 = 0 to get the similarity coordinate for
time as follows:

Θ =
1

2A
ln

( δ2
0 + 2Aν(t̃ − to)

δ2
0 + 2Aν(t − to)

)
. (39)

Substituting the relation for Θ into Equation (11) and
comparing terms 3 and 6 confirms the result for Θ,

· · · +

[
Rs
∂Θ

∂t

] ∂ fi,k
∂Θ

+

[
Rs
∂Θ

∂ t̃

] ∂ fi,k
∂Θ
+ · · ·

or

· · · −

[
νRs

δ2

] ∂ fi,k
∂Θ

+

[
νRs

δ′2

] ∂ fi,k
∂Θ
+ · · · .

When t = t̃, then δ2 = δ′2, canceling the two terms resulting in
all gradients inΘ being removed. Since the equation of motion
then has no derivatives with respect to Θ, and with Θ = 0 for

all time, the scaling function fi ,k does not change with time
and the single time result is recovered.

With Θ defined, we can now write the ratios of length
scales as a function of Θ,(

δ′

δ

)2

= e2AΘ, (40)

δ′

δ
= eAΘ. (41)

The result for Θ means that the similarity function fi ,k
is dependent on the difference in the logarithms of time. In
other words, the absolute time does not determine the two-
space two-time correlation, only the difference in log times.
This temporal dependence can be thought of as a “stretch-
ing” in time, since larger physical time differences are needed
at longer times to produce the same logarithmic difference.
Therefore, it becomes apparent that this scaling shows that the
scaled statistics are stationary in log time.

The basic phenomenon being scaled out here is the fact
that as the turbulence decays, the “eddies” are slowing down,
but when time is measured in logarithmic increments, it is not.
All logarithmic time differences appear to be the same, no
matter where in the decay life cycle the turbulence finds itself.

V. FULL TWO-POINT, TWO-TIME SIMILARITY
EQUATION

Substituting in the results of the similarity functions of
Equations (22), (23), (29), (30), (39), and (A28)–(A31) into
the full equation of (A14c) gives the full two-point, two-time
equation in similarity coordinates,

B

{(
1 + eAΘ

)2
+

(
1 + e−AΘ

)2}
fi,k − A

(
2 + eAΘ + e−AΘ

)
ηj
∂fi,k
∂ηj
+

{(
1 + e−AΘ

)2
−

(
1 + eAΘ

)2} ∂fi,k
∂Θ

− D
(
1 + eAΘ

) ∂tij,k
∂ηj
+ D

(
1 + e−AΘ

) ∂ti, jk

∂ηj
=E

(
1 + eAΘ

)
∂pak

∂ηi
− E

(
1 + e−AΘ

)
∂pbi

∂ηk
+ 2

∂2

∂η2
j

fi,k ,

(42)

where A, B, D, and E are all constants that depend on initial
conditions. If t = t̃, then Θ = 0 and the equation loses all
dependence on it, resulting in the single time equation. Note
that all terms in Equation (42) are functions of the similarity
coordinates η or Θ, showing that the proposed scaling and
similarity variables yield a similarity solution that is stationary
in log time and homogeneous in space.

VI. RELATION TO TWO-POINT, SINGLE-TIME RESULT

If t = t̃, Equation (33) simplifies to the two-point single-
time correlation,

〈uiũk〉 = Us,o
2

{
1 + (2Aν(t − to)/δ2

o)
}B/A

fi,k(η). (43)

This can further be simplified by looking at the trace for zero
spatial separation between points, i.e., the TKE. Setting i = k
and η = 0 results in

〈uiui〉 = Us,o
2

{
1 + (2Aν(t − to)/δ2

o)
}B/A

. (44)

Equation (44) is exactly the same result of George8 by see-
ing B/A = n, the energy decay rate (presumed negative).
Either the Taylor microscale or the integral scale is the
appropriate choice for the length scale. Since the Taylor
microscale is most reliably measured, we take δ(t) = λ(t).
With the Taylor microscale growing in time, the TKE will
require a negative exponent to stay bounded in time, mean-
ing B/A < 0. The functional form of the length scale
implies that A must remain positive, meaning B is a negative
number.

It is possible to use Equations (28) and (44) to show that
both a power-law and exponential decay behavior are present,
the former for large times, and the latter for short times. For
intermediate times, the decay is more complicated. To see the
short time behavior simply choose t to be small enough that
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2Aν(t − to)/λ2
o << λ2

o. Expanding the logarithm in Equation
(28) allows us to write

ln[Us/Uo] = Bν(t − to)/λ2
o + · · · . (45)

This immediately yields the exponential decay solution of
George and Wang,20 i.e.,

〈uiui〉 = U2
o exp[2Bν(t − to)/λ2

o]. (46)

George and Wang noted that for isotropic turbulence, the value
of the numerical coefficient in the exponent was calculated
to be �10 compared to our unknown 2B in a non-isotropic
homogeneous flow. Note that this implies that B must be
negative, which matches the previous conclusion about its
sign.

It seems likely that ALL attempts to produce decaying
turbulence will behave this way for short times, since all start
with some finite value of λo. Therefore, it is probably worth-
while to re-examine old homogeneous turbulence data2,3 in
light of this. If the exponential part is not included, then this
could very much affect the virtual origin needed to fit a power
law to the data, or the power exponent needed. Clearly the
fractal grids accentuate this part of the solution more than the
standard grids.21–24

Now look at the large time behavior where 2Aν(t − to)/λ2
o

>> λ2
o. In this limit,

ln[Us/Uo] ≈ ln [2Aν(t − to)/λ2
o]

B/2A
(47)

with the approximation holding better for larger time. This
clearly yields a power law decay for large times; i.e.,

〈uiui〉 = U2
o [2Aν(t − to)/λ2

o]
B/A

. (48)

Hence in the limit of large and small times, both the
power law and exponential solutions are valid. Neither are
exactly true for intermediate times, which may be for most
experiments and simulations. Thus, Equation (44) is exactly
the composite solution proposed by Mazellier and Vassili-
cos,25 which combined the solutions of George8 and George
and Wang20 into a single formula. The role of the initial
length scale, λo, does not seem to have been previously
noted.

VII. DECAY RATE AND INITIAL CONDITIONS

We know from the results of Section VI, as well as from
experimental results, that 〈u2〉 ∝ tn with n ≤ −1. But station-
arity in log-time variables implies the energy in time must be
infinite, which is possible only if an infinite energy is added
throughout space at the initial instant. This is consistent only
with t�1 decay. But in no experiments or simulations has a t�1

decay ever been observed, and n <−1 is observed instead. This
is exactly the problem we have with the finite spatial bound-
aries as well. Clearly further study is required to understand
the role of finite boundaries and conditions on the flows we
can actually realize. The two-space, two time similarity solu-
tion at least provides a clue as to what flow we are trying to
achieve.

VIII. CONCLUSIONS AND FUTURE WORK

A similarity solution for the two-point, two-time averaged
equations of motion for homogeneous turbulence in absence
of a mean flow has been found. The similarity solution implies
that the flow is homogeneous across time, as well as statisti-
cally stationary in logarithmic time increments. By utilizing
these new scaled coordinates, it may be possible to decompose
any homogeneous turbulent field in the absence of a mean
flow into Fourier modes. The implications of this result are
far reaching, including a new way to think about constructing
a realization of a homogeneous decaying turbulence field, as
well as reconsidering previous decompositions that neglected
the transformation in the temporal coordinate. Future investi-
gation of the proposed solution should include an attempt at
solving a “dynamically scaled” DNS that utilizes a growing
grid spacing and logarithmic time steps.
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APPENDIX: FORMAL DERIVATION
OF THE SIMILARITY SOLUTION

The two-space two-time homogeneous turbulence equa-
tion was found through averaging the product of the single
point fluctuating equations at two separate locations, x and y,
and two separate times t and t̃. The equation is found by start-
ing with Equations (1) and (2), and multiplying the first by ũk ,
and the second by ui,

ũk
∂ui

∂t
+ ũk

∂

∂xj
uiuj − ũk

∂

∂xj
〈uiuj〉 = −ũk

1
ρ

∂p
∂xi
+ ũkν

∂2ui

∂xj∂xj
,

(A1a)

ui
∂ũk

∂ t̃
+ ui

∂

∂yj
ũk ũj − ui

∂

∂yj
〈ũk ũj〉 = −ui

1
ρ

∂p̃
∂yk
+ uiν

∂2ũk

∂yj∂yj
.

(A1b)

Next, the ũk can be moved inside the derivatives in Equation
(A1a) because it is a function of y and t̃, while the derivatives
are with respect to x and t. Likewise, the ui can be moved
inside the derivatives in Equation (A1b) because it is a function
of x and t, while the derivatives are with respect to y and t̃.
Performing an ensemble average on each equation then will
have the third term disappear in both expressions, resulting
in

∂〈uiũk〉

∂t
+

∂

∂xj
〈uiujũk〉 = −

1
ρ

∂〈pũk〉

∂xi
+ ν

∂2〈uiũk〉

∂xj∂xj
, (A2a)

∂〈uiũk〉

∂ t̃
+

∂

∂yj
〈uiũk ũj〉 = −

1
ρ

∂〈uip̃〉
∂yk

+ ν
∂2〈uiũk〉

∂yj∂yj
. (A2b)

Summation of Equations (A2a) and (A2b) then gives
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∂

∂t
〈uiũk〉 +

∂

∂ t̃
〈uiũk〉 +

∂

∂xj
〈uiujũk〉 +

∂

∂yj
〈uiũjũk〉

= −
1
ρ

∂〈pũk〉

∂xi
−

1
ρ

∂〈uip̃〉
∂yk

+ ν
∂2〈uiũk〉

∂xj∂xj
+ ν

∂2〈uiũk〉

∂yj∂yj
.

(A3)

We will start by assuming a similarity solution for the
two-point, two-time velocity correlation of the following
form:

〈ui(x, t)ũk(y, t̃)〉 = Rs(t, t̃) fi,k(η,Θ), (A4)

〈uiujũk〉 = Ta(t, t̃)tij,k(η,Θ), (A5)

〈uiũjũk〉 = Tb(t, t̃)ti, jk(η,Θ), (A6)

〈p̃uk〉 = Pa(t, t̃)pak(η,Θ), (A7)

〈̃pui〉 = Pb(t, t̃)pbi(η,Θ), (A8)

where η = (y − x)/(δ + δ′) and Θ is some non-dimensional
function of t and t̃, unknown a priori. Rs(t, t̃), δ(t), and δ′(t̃)
are scale functions which are to be determined by insisting that
all terms in the two-point space-time equations have the same
time dependence, or none at all. This process is the same equi-
librium similarity hypothesis used by George,8 where there is
no assumption applied. Either the equations will admit to such
solutions since all terms are in equilibrium similarity, or they
will not. (Note that a common reason for failure is that terms
have been included in the analysis when they should have been
neglected.19)

Note that Rs, Ta, Tb, Pa, and Pb are scaling func-
tions which contain all dimensions, while the corresponding
similarity functions of η and Θ are non-dimensional.

It is important to note the difference in functions, where
tij,k(η,Θ) , ti, jk(η,Θ) and pak(η,Θ) , pbi(η,Θ), even if i = k.
Substituting these assumed solutions into Equation (A3) and
carrying out the math, we will get a new set of time dependent
constraints.

Looking to term 3 of Equation (A3), corresponding to
∂
∂xj
〈uiujũk〉, we will substitute the similarity form to find

∂

∂xj
〈uiujũk〉 =

∂

∂xj

(
Ta(t, t̃)tij,k(η,Θ)

)
= Ta

∂tij,k
∂ηj

∂ηj

∂xj

= −

[ Ta

δ + δ′

] ∂tij,k
∂ηj

.

Likewise, substituting Equation (A4) into the first term of
Equation (A3) will result in
∂

∂t
〈uiũk〉 =

∂

∂t

(
Rs(t, t̃) fi,k(η,Θ)

)
=
∂Rs

∂t
fi,k + Rs

∂fi,k
∂ηj

dηj

dδ
dδ
dt
+ Rs

∂fi,k
∂Θ

dΘ
dt

=

[
∂Rs

∂t

]
fi,k − Rs

rj

(δ + δ′)2

dδ
dt

∂ fi,k
∂ηj
+

[
Rs

dΘ
dt

] ∂ fi,k
∂Θ

=

[
∂Rs

∂t

]
fi,k −

[ Rs

δ + δ′
dδ
dt

]
ηj
∂ fi,k
∂ηj
+

[
Rs

dΘ
dt

] ∂ fi,k
∂Θ

.

The same process applied to all of the other terms,
and taking care to use the chain rule, will result in Equa-
tion (A14a) for the full similarity equation. Note that in
this equation, all terms with an explicit dependence on t
or t̃ are contained in the square brackets, while the scal-
ing functions contain only non-dimensional dependencies.
Equilibrium similarity of Equation (A14a) can only exist if
all the terms with square brackets are proportional as they
evolve in time, or if the ratio of the different terms at most
depends on Θ,14,15 the non-dimensional similarity variable in
time.

To determine if the proposed similarity solution satisfies
the equilibrium similarity hypothesis, we divide through by
νRs and multiply by (δ + δ′)2, giving us Equation (A14b).
This new expression is not simplified enough to inform us of
the temporal dependency of the scaling parameters. We next
take inspiration from the single time results, where in order
to determine the functional form of the scaling parameters we
assume separability,

Rs(t, t̃) = Us(t)U
′
s(t̃), (A9)

Ta(t, t̃) = Kt(t)U
′
s(t̃), (A10)

Tb(t, t̃) = K ′t (t̃)Us(t), (A11)

Pa(t, t̃) = Ps(t)U
′
s(t̃), (A12)

Pb(t, t̃) = P′s(t̃)Us(t). (A13)

This allows a t or t̃ dependency in each square bracketed
term to cancel out, ensuring that the scaling parameters within
each bracketed term are dependent on only t or only t̃. We
will treat the function Θ shortly, but for now assume that
its gradient is a function of t or t̃ when appropriate. Plug-
ging Equations (A9)–(A13) into Equation (A14b), along with
further re-arrangement, then results in Equation (A14c),

[
∂Rs

∂t

]
fi,k −

[ Rs

δ + δ′
dδ
dt

]
ηj
∂ fi,k
∂ηj
+

[
Rs
∂Θ

∂t

] ∂ fi,k
∂Θ
+

[
∂Rs

∂ t̃

]
fi,k −

[ Rs

δ + δ′
dδ′

dt̃

]
ηj
∂ fi,k
∂ηj
+

[
Rs
∂Θ

∂ t̃

] ∂ fi,k
∂Θ

−

[ Ta

δ + δ′

] ∂tij,k
∂ηj
+

[ Tb

δ + δ′

] ∂ti,jk
∂ηj

=

[ Pa

ρ(δ + δ′)

]
∂pak

∂ηi
−

[ Pb

ρ(δ + δ′)

]
∂pbi

∂ηk
+

[ 2νRs

(δ + δ′)2

]
∂2

∂η2
j

fi,k , (A14a)
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[ (δ + δ′)2

νRs

∂Rs

∂t

]
fi,k −

[ (δ + δ′)
ν

dδ
dt

]
ηj
∂ fi,k
∂ηj
+

[ (δ + δ′)2

ν

∂Θ

∂t

] ∂ fi,k
∂Θ
+

[ (δ + δ′)2

νRs

∂Rs

∂ t̃

]
fi,k

−

[ (δ + δ′)
ν

dδ′

dt̃

]
ηj
∂ fi,k
∂ηj
+

[ (δ + δ′)2

ν

∂Θ

∂ t̃

] ∂ fi,k
∂Θ
−

[ (δ + δ′)
ν

Ta

Rs

] ∂tij,k
∂ηj

+

[ (δ + δ′)
ν

Tb

Rs

] ∂ti,jk
∂ηj

=

[ (δ + δ′)
ρν

Pa

Rs

]
∂pak

∂ηi
−

[ (δ + δ′)
ρν

Pb

Rs

]
∂pbi

∂ηk
+

[
2
] ∂2

∂η2
j

fi,k , (A14b)

{ [
δ2

νUs

∂Us

∂t

]
+ 2

(
δ′

δ

) [
δ2

νUs

∂Us

∂t

]
+

(
δ′

δ

)2 [
δ2

νUs

∂Us

∂t

]
+

[
δ′2

νU ′s

∂U ′s
∂ t̃

]
+ 2

(
δ

δ′

) [
δ′2

νU ′s

∂U ′s
∂ t̃

]
+

(
δ

δ′

)2 [
δ′2

νU ′s

∂U ′s
∂ t̃

]}
fi,k

−

{ [
δ

ν

dδ
dt

]
+

(
δ′

δ

) [
δ

ν

dδ
dt

]
+

(
δ

δ′

) [
δ′

ν

dδ′

dt̃

]
+

[
δ′

ν

dδ′

dt̃

]}
ηj
∂ fi,k
∂ηj

+

{ [
δ2

ν

∂Θ

∂t

]
+ 2

(
δ′

δ

) [
δ2

ν

∂Θ

∂t

]
+

(
δ′

δ

)2 [
δ2

ν

∂Θ

∂t

]
+

(
δ

δ′

)2 [
δ′2

ν

∂Θ

∂ t̃

]
+ 2

(
δ

δ′

) [
δ′2

ν

∂Θ

∂ t̃

]
+

[
δ′2

ν

∂Θ

∂ t̃

]} ∂ fi,k
∂Θ

−

{ [
δ

ν

Kt

Us

]
+

(
δ′

δ

) [
δ

ν

Kt

Us

]} ∂tij,k
∂ηj
+

{(
δ

δ′

) [
δ′

ν

K ′t
U ′s

]
+

[
δ′

ν

K ′t
U ′s

]} ∂ti,jk
∂ηj

=

{ [
δ

ρν

Ps

Us

]
+

(
δ′

δ

) [
δ

ρν

Ps

Us

]}
∂pak

∂ηi

−

{(
δ

δ′

) [
δ′

ρν

P′s
U ′s

]
+

[
δ′

ρν

P′s
U ′s

]}
∂pbi

∂ηk
+

[
2
] ∂2

∂η2
j

fi,k . (A14c)

Careful examination of the time dependencies of the five
proposed similarity functions in Equations (A9)–(A13) shows
that the separability assumption yields a valid solution. For
example, looking at the third term in Equation (A3), corre-
sponding to ∂

∂xj
〈uiujũk〉, it is apparent that the dependence on

t̃ lies only on one velocity variable, while the dependence on t
lies in two velocity terms. With these dependencies on t and t̃,
we have proposed that it can be separated into two components,
and that the single velocity component is the same separable
U ′s utilized in the expression Rs = Us(t)U ′s(t̃). The same logic
is applied to all the triple correlation and pressure-velocity
correlation terms.

Inspection of terms contained in the braces of Equation
(A14c) reveals that the parameters in square brackets must be
temporally independent due to the constant factor multiplying
the second derivative. In other words

δ2

νUs

dUs

dt
∼

δ′2

νU ′s

dU ′s
dt̃
∼
δ

ν

dδ
dt
∼
δ′

ν

dδ′

dt̃
∼
δ2

ν

∂Θ

∂t

∼
δ′2

ν

∂Θ

∂ t̃
∼

Ktδ

νUs
∼

K ′t δ
′

νU ′s
∼

Psδ

ρνUs
∼

P′sδ
′

ρνU ′s
∼ 2,

(A15)

where∼ signifies that the terms have the same temporal depen-
dence. Since the last value is a constant, all the terms in
Equation (A15) are independent of t and t̃. This condition
requires that ∂Θ/∂t does not depend on t̃, and that ∂Θ/∂ t̃
does not depend on t, but this assumption was shown to be
valid in Section IV.

Finally, the ratio of any two groupings in the square brack-
ets of Equation (A14a) must be at most a function ofΘ. In other
words, all the terms in parentheses in Equation (A14c) have
to be a function of Θ, or a constant. If t = t̃, the length scales
δ and δ′ will be equal, implying that all ratios of them are 1.
However, since the correlation takes place across all times t

and t̃, we cannot say in general that δ = δ′, which means they
must be a function of Θ for equilibrium similarity to hold.

Under this constraint, we prescribe the following func-
tions: (

δ′

δ

)2

= Γ1(Θ), (A16)

δ′

δ
= Γ2(Θ). (A17)

If functions for Γ1 and Γ2 cannot be found, then equilibrium
similarity does not hold for Equation (A14a), but the result of
Section IV confirms the existence of a solution of the proposed
form.

Given all these requirements, we conclude that similarity
solutions are only possible if

δ

ν

dδ
dt
=
δ′

ν

dδ′

dt̃
= A(?), (A18)

δ2

νUs

dUs

dt
=

δ′2

νU ′s

dU ′s
dt̃
= B(?), (A19)

δ2

ν

∂Θ

∂t
= C1(?), (A20)

δ′2

ν

∂Θ

∂ t̃
= C2(?), (A21)

Ktδ

νUs
=

K ′t δ

νU ′s
= D(?), (A22)

Psδ

ρνUs
=

P′sδ

ρνU ′s
= E(?). (A23)

Integration of Equation (A18) gives

δ2 = δ2
0 + 2Aν(t − t0), (A24)
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δ′2 = δ2
0 + 2Aν(t̃ − t0), (A25)

where it is implied that the initial conditions and initial
length/time origin are the same for both expressions. Integra-
tion of Equation (A19) will yield

ln
( Us

Us,0

)
=

B
2A

ln
( δ2

0 + 2Aν(t − t0)

δ2
0

)
or equivalently

Us = Us,0

(
1 +

2Aν

δ2
0

(t − t0)
)B/2A

, (A26)

U ′s = Us,0

(
1 +

2Aν

δ2
0

(t̃ − t0)
)B/2A

. (A27)

This too implies the same initial conditions and velocity scale
for the second time t̃.

With the length and velocity scales found in Equations
(A24)–(A27), the pressure and triple correlations scales can
also be found

Kt =
DνUs,0

δ0

[
1 +

2νA

δ2
0

(t − t0)
] (B/A−1)/2

, (A28)

K ′t =
DνUs,0

δ0

[
1 +

2νA

δ2
0

(t̃ − t0)
] (B/A−1)/2

, (A29)

and

Ps

ρ
=

EνUs,0

δ0

[
1 +

2νA

δ2
0

(t − t0)
] (B/A−1)/2

, (A30)

P′s
ρ
=

EνUs,0

δ0

[
1 +

2νA

δ2
0

(t̃ − t0)
] (B/A−1)/2

. (A31)

This new equation could then be used to determine, for
example, the scaling of the triple correlation terms in Equation
(A3),

〈uiujũk〉 =
BDνU2

s,0

δ0

(
δ(t)
δ0

)B/A−1 ( δ′(t̃)
δ0

)B/A

· tij,k(η,Θ).
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